博客
关于我
哈希表(hash table)基础概念
阅读量:738 次
发布时间:2019-03-22

本文共 1804 字,大约阅读时间需要 6 分钟。

哈希是什么

引入:我们在学习数组的时候,使用数组元素的下标值即可访问到该元素,所花费的时间是O(1),与数组元素的个数n没有关系,这就是哈希方法的核心思想。

哈希方法:以关键值K为自变量,通过一定的函数关系h(K)(哈希函数)计算出对应的函数值,把这个值解释为结点的存储地址,将结点的关键码(key)和属性数据(value)一起存入此存储单元中。检索时,用同样的函数计算出地址,找到对应的数据。

哈希表:按哈希存储方式构造的存储结构称为哈希表(hash table)

举例:已知线性表关键码值集合为S={and, begin, do, else, for,golang},假设哈希函数是关键码K的第一个字母在字母表中的序号,哪么可以建立如下的哈希表:

当然这个例子特别简单,细心的同学很快就发现了二个问题:

  1. 如果S中有类似于and,apple这样的关键码,哪么这个表还怎么存放,在1的位置存放and还是apple呢?(这种现象称为冲突
  2. 分配的空间大小比实际所需的要大一点(一般情况下,哈希表的空间(H)比结点的集合(M)大,这样虽然浪费了空间,但是换来了检索效率,称α=M/H为哈希表的负载因子

其实这就是接下来要谈到的哈希函数的选择和冲突解决策略。

哈希函数

哈希方法的核心就是哈希函数的选择,理想的哈希函数应该使得结点“分布均匀”,且冲突少

为了简单起见,以下的哈希函数我们假设关键值都是整数(如果不是整数,哪也有特定的方法可以把它转换为整数,毕竟在计算机世界里,任何东西都是01组成的串)

除余法:

关键值码k除以M(往往取哈希表的长度),并取余数作为哈希地址。

乘余取整法

先让关键码k乘上一个常数A(0<A<1),提取乘积的小数部分。然后,再用整数n乘以这个值,对结果向下取整,将其作为哈希的地址。

有许多种哈希函数可以选择,每种都有其适用的场景,但是作为软件开发工程师,我们只要理解它的思想就可以,至于什么场景选择什么哈希函数,哪大概率是数学家应该研究的问题。

优秀的哈希函数可以尽可能的避免产生冲突,但是冲突的产生是不可避免地,这就是接下来要谈到的冲突解决策略

冲突解决策略

冲突解决技术可以分为两类,拉链法和开地址法,这两种方法的不同之处在于,拉链法把发生冲突的关键码存储在哈希表主表之外,而开地址法把发生冲突的关键码存储在表中另一个槽内。

拉链法

拉链法的一种简单形式是把哈希表中的每一个槽定义为一个链表的表头,哈希到一个特定槽的所有记录都放到这个槽的链表中。

假设S={and, apple, begin, do, dog, else, for, go, golang},哈希函数还是关键码K的第一个字母在字母表中的序号。哪么可以建立如下的哈希表:

开地址法

开地址法把所有记录直接存储在哈希表中。每个记录关键码K有一个由哈希函数计算出来的基位置,即h(k)。如果要插入一个关键码k,而另一个记录的关键码已经占据了k的基位置(发生冲突)则把k存储在表中的其他地址内,至于其他地址怎么选择,有多种算法,我们以顺序探测法为例。

已知一组关键码为{26,36,41,38,44,15,68,12,06,51,25},哈希表长度L=15,用线性探查法解决冲突构造的哈希表的过程如下:

利用除余数作为哈希函数,假设选择M=13,则散列函数为:h(k)=k%13,按顺序插入各个结点:

h(26)=0, h(36)=10,h(41)=2, h(38)=12, h(44)=5,

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
26 25 41 44 36 38

h(15)=0,发生碰撞,因此需要进行探查,按照顺序探测法,显然3为开放的空闲地址,因此可以将其放在3单元。

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
26 25 41 15 44 36 38

68和12也类似,最后的哈希表如下所示:

1 2 3 4 5 6 7 8 9 10 11 12 13 14
26 25 41 15 68 44 6 36 38 12 51

小结

本文简述了哈希表的基本概念和思想,作为软件工程师,掌握这些知识足够我们从事工程开发了,至于一些偏数学方面的知识,比如散列方法的效率分析,以及相关的一些优化,本文就不再讲述。

参考资料:《数据结构与算法》张铭 编著

转载地址:http://anywk.baihongyu.com/

你可能感兴趣的文章
NIFI大数据进阶_NIFI集群知识点_认识NIFI集群以及集群的组成部分---大数据之Nifi工作笔记0014
查看>>
NIFI大数据进阶_NIFI集群知识点_集群的断开_重连_退役_卸载_总结---大数据之Nifi工作笔记0018
查看>>
NIFI大数据进阶_内嵌ZK模式集群1_搭建过程说明---大数据之Nifi工作笔记0015
查看>>
NIFI大数据进阶_外部ZK模式集群1_实际操作搭建NIFI外部ZK模式集群---大数据之Nifi工作笔记0017
查看>>
NIFI大数据进阶_实时同步MySql的数据到Hive中去_可增量同步_实时监控MySql数据库变化_操作方法说明_01---大数据之Nifi工作笔记0033
查看>>
NIFI大数据进阶_离线同步MySql数据到HDFS_01_实际操作---大数据之Nifi工作笔记0029
查看>>
NIFI大数据进阶_离线同步MySql数据到HDFS_02_实际操作_splitjson处理器_puthdfs处理器_querydatabasetable处理器---大数据之Nifi工作笔记0030
查看>>
NIFI大数据进阶_离线同步MySql数据到HDFS_说明操作步骤---大数据之Nifi工作笔记0028
查看>>
NIFI大数据进阶_连接与关系_设置数据流负载均衡_设置背压_设置展现弯曲_介绍以及实际操作---大数据之Nifi工作笔记0027
查看>>
NIFI数据库同步_多表_特定表同时同步_实际操作_MySqlToMysql_可推广到其他数据库_Postgresql_Hbase_SqlServer等----大数据之Nifi工作笔记0053
查看>>
NIFI汉化_替换logo_二次开发_Idea编译NIFI最新源码_详细过程记录_全解析_Maven编译NIFI避坑指南001---大数据之Nifi工作笔记0068
查看>>
NIFI汉化_替换logo_二次开发_Idea编译NIFI最新源码_详细过程记录_全解析_Maven编译NIFI避坑指南002---大数据之Nifi工作笔记0069
查看>>
NIFI集群_内存溢出_CPU占用100%修复_GC overhead limit exceeded_NIFI: out of memory error ---大数据之Nifi工作笔记0017
查看>>
NIFI集群_队列Queue中数据无法清空_清除队列数据报错_无法删除queue_解决_集群中机器交替重启删除---大数据之Nifi工作笔记0061
查看>>
NIH发布包含10600张CT图像数据库 为AI算法测试铺路
查看>>
Nim教程【十二】
查看>>
Nim游戏
查看>>
NIO ByteBuffer实现原理
查看>>
Nio ByteBuffer组件读写指针切换原理与常用方法
查看>>
NIO Selector实现原理
查看>>